Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster.
نویسندگان
چکیده
The bile adapted strain Bifidobacterium animalis subsp. lactis IPLA-R1 secretes a high molecular weight exopolysaccharide (HMW-EPS) when grown on the surface of agar-MRSC. This EPS is composed of L-rhamnopyranosyl, D-glucopyranosyl, D-galactopyranosyl and D-galactofuranosyl residues in the ratio of 3:1:1:1. Linkage analysis and 1D and 2D NMR spectroscopy were used to show that the EPS has a hexasaccharide repeating unit with the following structure: [See formula in text]. Treatment of the EPS with mild acid cleanly removed the terminal d-galactofuranosyl residue. The eps cluster sequenced for strain IPLA-R1 showed high genetic homology with putative eps clusters annotated in the genomes of strains from the same species. It is of note that several genes coding for rhamnose-precursors are present in the eps cluster, which could be correlated with the high percentage of rhamnose detected in its EPS repeated unit.
منابع مشابه
Immune Modulating Capability of Two Exopolysaccharide-Producing Bifidobacterium Strains in a Wistar Rat Model
Fermented dairy products are the usual carriers for the delivery of probiotics to humans, Bifidobacterium and Lactobacillus being the most frequently used bacteria. In this work, the strains Bifidobacterium animalis subsp. lactis IPLA R1 and Bifidobacterium longum IPLA E44 were tested for their capability to modulate immune response and the insulin-dependent glucose homeostasis using male Wista...
متن کاملExopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium 1 animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human 2 faecal microbiota in pH-controlled batch cultures
متن کامل
Exopolysaccharides produced by probiotic strains modify the adhesion of probiotics and enteropathogens to human intestinal mucus.
Exopolysaccharides (EPSs) are exocellular polymers present in the surface of many bacteria, including Lactobacillus and Bifidobacterium. The genome sequence of several strains revealed the presence of EPS-encoding genes. However, the physiological role that EPSs play in the bacterial ecology still remains uncertain. In this study, we have assessed the effect of EPSs produced by Lactobacillus rh...
متن کاملEffect of a Ropy Exopolysaccharide-Producing Bifidobacterium animalis subsp. lactis Strain Orally Administered on DSS-Induced Colitis Mice Model
Exopolysaccharide (EPS)-producing bifidobacteria, particularly Bifidobacterium animalis subsp. lactis strains, are used in the functional food industry as promising probiotics with purported beneficial effects. We used three isogenic strains of B. animalis subsp. lactis, with different EPS producing phenotypes (mucoid-ropy and non-ropy), in order to determine their capability to survive the mur...
متن کاملGene Replacement and Fluorescent Labeling to Study the Functional Role of Exopolysaccharides in Bifidobacterium animalis subsp. lactis
An extracellular layer of exopolysaccharides (EPS) covers the surface of some Bifidobacterium animalis subsp. lactis strains, which could be of relevance for its probiotic performance. In order to understand the functional characteristics of B. animalis subsp. lactis, two isogenic strains that differ in their EPS-producing phenotype, due to a single mutation in the gene Balat_1410, were studied...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Carbohydrate research
دوره 346 17 شماره
صفحات -
تاریخ انتشار 2011